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SUMMARY 

In a model of the Czochralski crystal growth system the crystal is represented by a solid rotating plane 
adjacent to a semi-infinite region occupied by the melt from which the crystal is grown. The melt itself may 
be subjected to rotation at large distances from the interface. In a co-ordinate system advancing with the 
interface the crystal growth is modelled by a 'suction' velocity at the interface. A transient analysis is 
performed following a discontinuous change of solute concentration in the bulk of the melt. Two cases are 
considered, namely (i) solid body rotation of crystal and melt and (it) no melt rotation at large distances 
from the interface. The paper represents a re-examination and re-interpretation of earlier work by Burton, 
Prim and Slichter [11. 

1. Introduction 

In an earlier paper Burton, Prim and Slichter [1] (hereafter referred to as BPS) studied transient 

phenomena in a model of a crystal growth system in which the crystal interface is represented 

by a plane surface adjacent to a semi-infinite region occupied by the melt from which the 

crystal is grown. In particular they considered the transient interface solute concentration when 

a sudden change is made to the solute concentration in the bulk of the melt. Convective effects 

dominate in the bulk of  the melt whose solute concentration is therefore assumed to change 

instantaneously. It is only within a distance fi from the interface that diffusive and convective 

effects become comparable. Accordingly BPS apply boundary conditions at the interface and at 

a fixed distance 8 from it. Their analytical solution may then be expressed as an eigenfunction 

expansion. 

The work of  BPS has been criticised by Wilson [7], [8]. In [7] Wilson questions the interpre- 
tation o f  8 as a concentration boundary-layer thickness, showing this only to be true at small 

growth rates. 

In [8], the system is modelled by a laterally unbounded region between two parallel disks. 

Initially the two disks are taken to be stationary, with the solute uniformly distributed through- 

out the melt. One of  the disks is then gradually rotated up to an angular velocity and suction 

applied at this disk. The resulting steady state achieved by the solute concentration field is 

compared to that of  the BPS model; it is found that the results essentially verify those of  BPS. 

The hydrodynamical aspect of  the problem is discussed in [9]. In both [8] and [9] numerical 
techniques are employed to solve the diffusion and Navier-Stokes equations. 

In this paper we reconsider the problem, and in particular by interpreting the outer boundary 

condition as a matching condition, rather than one to be applied at a finite distance, we 
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demonstrate the inadequacies of the analysis of [ 1 ]. We consider the situation in which the solid 
plane interface rotates and either (i) the whole of the melt rotates with the same angular 
velocity or (ii) the bulk of the melt is not rotating. Thus case (i), which corresponds to that 
considered, by BPS, is a model of the normal freeze technique whilst case (ii) is a model of the 
Czochralski process. 

In both of the cases considered we use Laplace transform techniques to advantage. In case 
1 

(i) we show that for k/> i ,  where k is the segregation coefficient, the solution is dominated by 
the presence of a branch point whilst for k < ~ a simple pole is the dominant feature. The exact 
solution may be expressed as a real integral which is evaluated numerically. A comparison with 

the work of BPS shows that with the present formulation a much larger response time for the 
surface concentration is predicted. For case (ii) we extend the analysis of Riley [2] to derive an 

asymptotic solution, valid at large times, for the large Schmidt numbers associated with the 
Czochralski crystal growth process. In this case the solution in the transformed plane is deter- 
mined from simple poles which yield what is effectively an eigenfunction expansion, of value at 
large times. We supplement this asymptotic analysis with a numerical solution of the governing 

partial differential equations. The work of BPS is re-interpreted in relation to the results which 
we have obtained for case (ii). 

2. The model equations 

As mentioned in Section 1 we consider two different situations. The first is that in which both 
the liquid and solid phases co-rotate with the same angular velocity I2 about an axis normal to 

the interface. The interface is assumed to be planar and to move in a direction also normal to 
the interface. In the second situation, we model a Czochralski growth system in which the solid 
phase rotates as before but the bulk of the melt does not rotate. In this case the solid-liquid 

interface is modelled by a rotating disk. 
In both cases freezing is assumed to take place and the interface velocity prescribed. This is 

permitted as the velocity is determined by the thermodynamics of the system. Further in both 
cases we take our origin of coordinates in the moving interface. This choice gives rise to an 

effective 'suction' velocity at the interface as it advances into the liquid phase. 
We also assume that the ratio of the diameter of the crystal to that of the crucible is small. 

This then permits us to model the liquid phase by a region of infinite lateral extent. With this 
simplification the Navier-Stokes equations are reduced to dependence on a single variable. Our 

model of the system is shown in Fig. 1. 
By use of a similarity transformation the radial, tangential and normal velocity components 

may be written, respectively, as 

1_ L 

Vr = -  ~rD, h'(s), v 0 =rD.g(s), v z = (uI2)2h(s), s =  ([2/v)2z (2.1) 

where p is the kinematic viscosity of the liquid phase and z is as shown in Fig. 1, we may reduce 
the Navier-Stokes equations for steady flow to the following pair of coupled ordinary differen- 

tial equations [3]: 
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Figure 1. The configuration of the system. 

h " -  ,, , ,2 2g: hh + ~h - = -  2[2, 

g " - h g ' + h ' g  =0, 
(2.2) 

where I is the ratio of the rotation of the bulk of the melt to that of the solid. Thus for case (i) 
I = 1, and case (ii)I = 0. The boundary conditions for (2.2) are 

h(0)=-• ,  h ' (0)=0,  g (0 )= l ,  h ' (~ )=0 ,  g (~ )=I ,  (2.3) 

/ 

where i f f  denotes the normal component of the interface velocity then ~ = (v~2)2f. 
We have modelled the rotation of the bulk of the melt by placing the boundary conditions 

at infinity. We justify this as follows. Our use of the similarity transformation (2.1) assumes, in 
effect, that the thickness of the moving layer of fluid, which is O[(v/~2) r ] is small compared 
with the diameter of the crystal which in turn is small compared to a typical dimension d of the 
crucible. Thus we have that the Reynolds number R > >  1 where 

R = ~22d/v. (2.4) 

In this high Reynolds number situation the fluid motion is essentially confined to a neighbour- 
hood of the moving boundary with only weak circulation induced in the bulk of the melt and 
as a consequence the conditions (2.3) may be interpreted as matching conditions with the flow 
in the bulk of the melt. 

We now turn to the diffusion equation. In terms of our similarity transformation (2.1) this 
may be written as 

02c Sch(s) ac Oe (2.5) as---¢- ~s =sc a-~" 
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where c is the solute concentration field, r = ~t ,  and Sc = u/D is the Schmidt number for the 
system where D is the diffusivity of the solute, and t is the time. The segregation coefficient k 
for the system under consideration is defined by 

k = Concentration of solute in the solid phase at the interface (2.6) 
Concentration of solute in the liquid phase at the interface " 

We assume that k remains constant throughout and that there is no diffusion in the solid phase. 
By considering the conservation of solute at the interface we obtain for the boundary condition 
onc atz =0 

3c [ = ~Se(k - 1)c . (2.7) 
as [ s=O s=O 

Further we require the concentration of solute in the bulk of the melt to remain constant. Thus 
as discussed above we place this boundary condition at infinity to give 

c(oo) = 1. (2.8) 

It is at this point that we differ from BPS for they replace the boundary condition (2.8) by 

c lz =8 = 1, (2.9) 

where 8 is representative of the thickness of the solute boundary layer and thus depends upon 
the viscous boundary-layer thickness. (For necessarily the solute boundary layer depends on the 
convective processes and hence the viscous boundary layer.) 

• They also argue that within a region of thickness 6 adjacent to the interface the effect of 
~liffusion becomes important and comparable to the convective effects due to the movement of 
the interface. Outside this region they consider that convective effects in the bulk of the melt 
are sufficient to maintain the concentration of the solute at z = 8 at a constant level. They 
considered the response of the system under the initial condition 

c = H ( z - 6 ) ,  t = 0 ,  (2.10) 

where H denotes the Heaviside unit step function. With these assumptions they give themter  
face concentration c(0, t) as 

1 _zxoo #i6 sin/ai6 exp 1 -  I ( A f  +(#/6)21 ~2 t } 

k+(1  - k ) e  -A i--i 1 2#i8 + ~ i g )  (2.11) 

where A =J'~[D and #i6 is the ith positive root of 

ua cot u8 = ( {  - (2.12) 

Journal of Engineering Math., VoL 14 (1980) 161-176 



Crystal growth systems 165 

The solution obtained for c(s,t) by BPS which yields (2.11) is derived by an eigenfunction 
expansion which is an appropriate technique for the linear parabolic equation (2.6) on a finite 
interval. 

Our primary objections to the model adopted by BPS are: 

(i) It presupposes a discontinuous behaviour in the physical processes governing the transport 
of solute in the liquid phase. 

(ii) There is a discontinuity in the gradient of the concentration field at z = 6 for all time, 
which implies the existence of a solute sink at that point. 

(iii) When modelling the co-rotational case, 6 is arbitrarily prescribed, as no viscous boundary 

layer is formed in this case. Hence no estimate can be made of the solute boundary-layer 
thickness. 

(iv) In a situation in which a transient concentration field exists the thickness of the diffusion 
boundary layer will vary. Hence it is inappropriate to assume that 6 is independent of time. 

By use of our viscous boundary-layer scaling we overcome these objections by employing a 

matching condition for the concentration field, in order to model the bulk of the melt, as 
discussed previously. 

In Fig. 2 we reproduce the results of BPS for the interface concentration obtained from 

equation (2.11) for various values of k and A; also in Table 1 we include the calculated 
eigenvalues for (2.12). 

3. The solution procedure 

Case {i} I = 1 

This is the co-rotational case and equations (2.2) are trivially satisfied by h - -3,, g - 1. 

We take the same initial condition upon c as that used by BPS which is given by (2.10). This 

is so we may compare our results with those of BPS. It is for this reason that we change to a 

new scaling ofz  and t. Thus we write x = z/6, ~ =Dt/8 2 and the problem now becomes 

0% Oc Oc 
- - + A  _ ~ 2  ~ 0 a '  

0c = A ( k - 1 ) c  at x = 0 ,  t > 0 ,  
0x 

(3.2) 
c ~ l  as x-+oo, t > 0 ,  

c = H ( x - 1 )  at t = 0 ,  x1>0. 

It should be noted in this case that because there is uniform flow up to the interface, no viscous 
boundary layer is formed and so the choice of 6 is purely arbitrary. 
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Figure 2. 
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The normalised interface concentration as a function of time for the BPS model, calculated from 

TABLE 1 

Comparison between the eigenvalues of(3.26) and those arising from BPS in (2.12). 

k A /I I 6 UZo Al_a 

1 1 1.8365 
1 0.I 1.6019 
0 0.1 1.5383 
0.1 1.0 1.2644 
0 1.0 1.1655 

1.2725 
0.8328 
0.7740 
0.7111 
0.6301 

-1 .3009 
-1 .1614 
-1 .2674 
-2 .4936 
-2 .8110 
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We now proceed by taking the Laplace transform of (3.2) with respect to ~, where ~-, the 

transform o f c  is defined by 

-c= f o  c(x'°t)e-P~d°t' (3.3) 

whence the problem for E-is 

-----it c + A T ' - p F = - H ( x -  1), 

----4 
c = A ( k - 1 ) ~ - ,  at x = 0 ,  

-¢-+ l /p , x -, oo, 

(3.4) 

where a prime denotes differentiation with respect to x.  We solve this in two regions; 0 ~<x < 1 

and x / >  1, requiring-E and ~'  to be continuous at x = 1. From the solution obtained in this way 

we have, for the transform of the solute concentration at the interface 

~-(0,p)- P A(2k  - 1) + X / ~ - - - - ~ +  exp 2 , (3.5) 

where a positive square root is intended. From (3.5) the square root terms cause-6(0,p) to be a 

multivalued function of  p. To overcome this problem we introduce a branch cut into the 

complex p-plane along the negative real axis from p = - ~ -  i.e. - rr < arg p +-~- ~ rr. With 

1 this restriction upon p we have a simple pole at p = 0 and for k < 7 an additional pole at p = 

A2k(k-1) .  The residues ofT(0,  p) are respectively -~ ,and 2 - exp ( -kA) .The  pole a tp  -=0 

corresponds to the final steady state. Also the other pole lies between the origin and the branch 
A 2 1 

point moving monotonically from 0 to - - -  as k varies from 0 to 7' 
4 

Imaginary Axis 

ir 

F 

~eal Axis  
2 

- i r  

Figure 3. The contour F in the complex p-plane. 

Journal ofEngineeringMath., Vol. 14 (1980) 161-176 



168 A. A. Wheeler 

The Laplace inversion formula is 

1 fa+i'-~(O,p)eP~dp ' (3.6) c(O,~) = ~ ~ - . .  

where a lies to the right of all the singularities ofT(0, p). Using the Residue Theorem we may 
relate this to 

1 f r  -(( P~dp, in -+ J = 2~r---/ O,p)e the limit r oo (3.7) 

where P is as shown in Fig. 3. Then we obtain 

1 +H(~ - k)exp ( - k A  + A2k(k - 1)a) c(O,a) = ~  

lex (  
- ~ -  2 4 ~ x 

1 
Xfo** [{p + A2(2k - 1)} sin ~ "V~ + 2A(1 -- k) cos ½ X/p']e 4 

(p + A 2 ) ( p + A 2 ( 2 k -  1) 2 ) 

dp 
(3.8) 

Using Watson's lemma we may obtain an asymptotic form for c(0,a) as a --} oo. Thus 

1 + H ( ~ - k ) ( 2  - 1 )  e x p { - k A + A 2 k ( k - 1 ) a }  c(0,~) ~ 

1 ( A  
~sc4x /¥  exp 2 

$ 

,+c2,(4) 
3 I C1 C2 

+~ 1 3! 2! (ct +e2)  

$ 

(4) 
+ - ~  ~ + 4-7.. - 3~ + cse4 c4 2 

( 1 ) (  c, c2)1 , 1 + __ 1 + 0(~ -~)  
- es c4 ~.. 2! 

(3.9) 

A2 A 2 A2 
wherecl = -~- ( 2 k -  1), e2 =A(1 - k ) ,  cs = --~ andc4 = ~ ( 2 k -  1) 2 . 
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Figure 4. The Rormalised interface concentration as a function of time for the co-rotational case calculated 
from (3.8), ink l ing  the asymptotic representation calculated from the leading-order term of (3.9) which is 
denoted by the broken line. (It should be noted that for ~ = 0.1, and at the values ofDt/,S 2 shown, the 
asymptotic result is negative.) 

Case (ii) I = 0 

In this case, in which the non-uniform fluid motion close to the interface is important,  we 

introduce the further realistic assumption that Sc > >  1, a consequence of which is that the 

crystal growth rate is small so that k < <  1. We follow Riley and Sweet [4] and seek an 

asymptotic solution of our equations in the limit Sc ~ oo. Hence we put 

~ = Sc-#~o, (3.10) 

where ko = O(1), and further expand h andg  in terms of the Schmidt number. Thus 

h(s) = ho(s ) + h I (s)Sc -# + h 2 (s)Sc -2# + 0(Sc-39),  

g(s) = go(s) + gl (s)Se-9 + g2 (s)Sc-29 + O(Se-39). (3.11) 

The leading-order terms, ho and go, satisfy the original non-linear ordinary differential equa- 

tions (2.2) but the terms h i and gi (i >1 1) satisfy linear differential equations. 
As BPS point out diffusion is relevant in a boundary layer adjacent to the interface where its 

effect is comparable to convective effects. Thus we scale the normal coordinate of  (2.1) as 

s = Sc-~n.  (3.12) 

The boundary condition (2.7) at the interface then gives 

/ 3+3 '=1 .  

Also we note that expanding ho(s) and hi (s) for s << 1 gives 

ho = - / 1 o  s2 +/~ls 3 + O(s4), hi = - ~ o  -/.t2 s2 +O(s3)  . 

(3.13) 

(3.14) 
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1 Riley and Sweet showed that 7 -- ~ is the most important case corresponding to the situation 
in which diffusion is comparable to convective effects in the diffusion boundary layer. With 3' = 
(2.5) becomes, after expanding h for small values of its argument as in (3.14) 

8~c +{)to +/~o~ ~ +;q~3Sc-~ +t~2~2Sc - ~  +O(Sc-~)} ~c ac 
~ 2  ~ - ~0 ' 

(3.15) 

_ L  
where 0 --- Sc 3 r. 

We must now consider the associated boundary conditions. For small values of growth rate 

BPS give 6 as 

I ! 

6 = 1.6 Sc-  ~(vl~2) "¢, (3.16) 

from a consideration of the steady-state condition for this case. Hence, in order to achieve a 

comparison with their model we let ~ correspond to r/= 1.6. Thus we impose upon the system 

the following condition 

c =F 0?  ), a t 0 = 0  

where 

j 0.5 {1 + tanh(exp { a ( r / - / 3 ) } -  1.0)}, r / ) /3  
F(~)= 

"t 0.5 {1 - tanh (exp {c~  - r~)} - 1.0)}, ~7 </3, (3.17) 

rather than a discontinuous step change in solute concentration. The function F(r/) which 
models a step change has been chosen to ensure a sufficiently rapid decay to uniform values in 
order that integrals which subsequently appear in the analysis converge. We put ot = 8.35 and 
/3 = 1.5 so that the solute concentration achieves 95% of its final value at ~/= 1.6. 

The boundary condition at r~ --- 0 given by (2.7) now becomes 

~--q-c I = X o ( k -  1)c I (3.18) 

whilst the boundary condition (2.8) remains unchanged. We are thus required to solve (3.15) 

with the boundary conditions (2.8), (3.17)and (3.18). 
No exact solution is available to us, hence we have numerically integrated (3.15)to leading 

order in Sc-~ along with boundary conditions (2.8), (3.17), and (3.18). The appropriate value 
for/ao is 0.51023. From (2.1), (2.11), (3.10) and (3.16) Xo and A are related by 

A = 1.6 ~'o. (3.19) 

Using this relationship we were able to use values of ;% that correspond to the cases given by 
• BPS. Further, we have carried out an asymptotic analysis for large time. 

It is to the asymptotic solution that we now turn. We shall show that the leading term of c 

can be given spectrally in the form 

Journal ofEngineeringMath., Vol. 14 (1980) 161-176 



Crystal growth systems 171 

Ei(~) exp ( -  eiO), (3.20) 
i=0 

where {Ei(r/)} is a sequence of functions, and {e i} is a corresponding positive real sequence. 
The appearance of  powers of Sc-~ in (3.15) indicates that we should expand c as a power 

1 
series in Sc-~. Thus we write 

e = 1 +Co(S,t)+ O(Sc-~). (3.21) 

The division of  the leading-order term into two parts is purely for convenience at later stages in 

the. analysis. We now take the Laplace transform of (2.8), (3.15), (3.17) and (3.18) to give for 

?o: 

-----/F 2 r 
Co + (Xo +/aor/ )To - pC-o = 1 - F(r/), 

c% = Xo(k - 1)~-o, r/= 0, (3.22) 

C-o-* 0 as r / ~ .  

As we wish to show Co has the form (3.20) we must demonstrate that-~o has a discrete 

sequence of simple poles along the negative real axis in the complex p-plane. Thus we put 

P +Pn = e, (3.23) 

where e < <  1. We further allow this pole to be dependent upon the Schmidt number. Hence we 
write 

- " ~ S c - ~  + + Pn - vo + v~Sc -~ O(Sc -1 ), (3.24) 

where ~o, v~ ....  are non-zero complex constants. 

Our aim then is to show that ~-o can be expanded as 

- -  + ¢o + ~bl e + O(e2), (3.25) Co= e 

and hence that c-o has a simple pole at p = - Pn and further that {v~ } is a positive real sequence. 

Combining (3.22), (3.23), (3.24) and (3.25) we obtain 

n 
C, + (?,o + taor/2)~'-i + Vo~-, = 0, 

~'-1 = ~.o(k - 1)~-1, at 77 = 0, 

¢ - 1 4 0  as r / ~ ;  

~o + (?,o 2 , + #or/ )¢o + ~o¢o = ~)-1 + G(r/), 

~bo Xo(k 1 ) (  1 ) . . . .  + ¢o at r/= 0, 
n 

/ ) 0  

~ o ~ 0 ,  r/"-* ~,  

(3.26) 

(3.27) 
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where G(~) = 1 - F(~). 

Equation (3.26) for ¢~_~ poses an eigenvalue problem for v~ since for general values of this 
parameter both boundary conditions will not be satisfied by a non-trivial solution. We consider 

n generated by equation (3.26). To do this we transform the equation for ¢_~ the eigenvalues v o 
by defining ~(~) from 

1 3 ~-1 (~) = ~(~) exp {-  -~ (Xor/+ ~/2o~ )}, 0.28) 
so that (3.26) becomes 

~" + {vg - q(r/)}~ = 0, (3.29) 

where q(r/) 1 = ~(;~o + gor~2) 2 + #o~. Multiplying (3.29)by ~0", the complex conjugate of ~, and 
integrating by parts yields, following a little manipulation, 

~o= I foq(~)l~O?)l'd~ +Xo(k-~)I/foOOl~(~)12d~. (3.30) 

Hence for k />  -~, ~ lies upon the positive real axis in the complex p-plane. For k < ~ no such 

n except to say that our numerical searches for these eigenvalues restriction can be shown for v o 
have always given vg > 0. We also note that with reference to Theorem 5.9 of Titchmarsh [5] 
we can show that these eigenvalues form a discrete set. 

Having considered the eigenvalues we show that such an expansion (3.25) is consistent. 
Equation (3.24) has two linearly independent solutions, one of which is asymptotic to (1 .) 
exp --~ go r~ as rl -~ co and the other to exp . We require of q~_~ that 4~-1 (~) -- 0. 

\ UorU 

n of (3.26) are such that the eigensolution consists only of the first Thus the eigenvalues v o 
linearly independent solution. Hence 

~-~ = A-IA(r/), (3.31) 

( ) whereA(r~)~kl  exp - 3 as 7 7 ~ ,  A ' ( 0 ) - - X o ( k -  1), A(0)= 1 withA_i, ko real 
constants. 

Any other linearly independent solution B(r~) say will be asymptotic to exp ( v ~  ~. The 
/ 

choice of B(O) and if(O) will ensure a non-zero Wronskian of A (7) and B(~) and hence that they 
are linearly independent. We thus specify 

B'(0) = l, B(0) = 0, (3.32) 

andnote tha tB( r / )~k2exp  (~o~°)  asT/~oo. 

At this stage A-1 is indeterminate and is determined from a consideration of $o as follows. 
By the method of variation of parameters we obtain 
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~o =AoA(B) +BoB(q) + A(B) f :  8(0 - ~ )  {A-,A(t) + G(t)}dt 

- B(B) f ~  A(t) - ~  {A-IA(t) + G(t)}dt, (3.33) 

where Ao, Bo are real constants, and W(t) is the Wronskian of A(B) and B(B). Thus 

It(r/) = - exp (- /l°B3 ~o~) • (3.34) 

Now 

G(B) = 1 - F(B) ~ exp [ -  exp (16.7 (7 - 1.5))], (3.35) 

as B -~ oo. 

From (3.34) and (3.35) we see that the first integral in (3.33) behaves as exp(~oB) as B ~ oo 
whilst the second integral converges. Applying the boundary condition at infinity then gives 

.o A2(t) el" 8o - A_, fo w(,5 - ' -  fo A(t (t) I¢(t) dt= O, (3.36) 

whilst the condition at B = 0 gives 

~o(1 - k) 
Bo - , (3.37) 

so that finally we have 

A_i=I}%(l-k) fo" A(t)G(t) ] / f o ~  A~(t) dt 
fo - l¢(t) dt • W(t) (3.38) 

In this way ~_~ is completely determined and we may go on to determine ¢o, ¢~, etc. It should 
be noted that each of ~-1, ~bo, etc. are only determined at each stage to within an arbitrary 
multiple of A (B). The arbitrariness is removed at the next stage. Hence we have shown that 
(3.25) is self consistent and therefore that To has a discrete set of simple poles along the 
negative real axis. A similar analysis can be applied to higher order terms of c; this would 

determine ~ ,  u2, etc. 
From the foregoing analysis we have shown that co has the form (3.20y where Ei(r~) = 

Ai-jA(B) and e i = v~, where A[a is the value of A-x corresponding to the i th eigenvalue flo of 
(3.26). 

Since we have insisted implicitly that ~ is non-zero we have ignored the pole at the origin 
which yields the final steady state given by the first term of (3.20) with e ° = 0. We calculate the 

steady-state solution directly from (3.15). Thus w i th -~  --- 0 and c = Css(B ) we have 
0 ( 7  
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1 
css(~l) = k + ?,o(1 - k) V(oo) ~Xo(1 - k)V(n)  + k} 

where 

j: E(,ou l.u 
(3.39) 

Hence the effective segregation coefficient def'med by 

e soli_______dd k (3.40) 
keff = eliquid - k + Xo(1 - k) V (oo) ' 

whereas BPS obtained for the effective segregation coefficient in their analysis 

k 
keff= k + (1 - k) exp ( -  1.6 X0) " (3.41) 

Equations (3.40) and (3.41) illustrate the essential difference between BPS and the present 

analysis. In the absence of  rotation kef f = k, and insofar as the introduction of  an artificial sink 

at z = 8 may model the effects of  rotation it is reflected in the value of  kef f given in (3.41). 
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Figure 5. The normalised interface concentration against time for the rotational case obtained by our 
numerical integration. The asymptotic solution calculated from the first two terms of (3.20) is denoted by 
the broken line. 
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This value of keff, obtained by assuming the form (3.16) for 6 is at best an approximation as 

comparison with (3.40) shows. 
In Fig. 5 we display the interface concentration as a function of time, and it is worth 

1.5 62 
remarking that for t > ~ the first two terms of (3.20), that is the steady solution and the 

leading time-dependent solution represent the solution to within 0.01%. Table 1 gives the values 
of rio and A-X1 for the corresponding values o fk  and A. 

4. Discussion of results 

A comparison of Fig. 2 and Fig. 4 shows that the interface concentration for the co-rotational 
case varies much less rapidly (by an order of magnitude) that that given by BPS. This is partly 
due to the fact that BPS introduce a discontinuity in the concentration gradient at z = 5, which 
has the effect of placing a solute sink there. In turn this causes the interface concentration to 
rise to a smaller final value and hence with a shorter response time. Further they maintain the 
concentration level at z = 6 whereas in our model the solute must be brought to the interface 

from infinity. This also contributes to the shorter response time for the BPS model. 

From a detailed comparison between (3.9) and (2.11) we are able to highlight further 
differences between the solution obtained herein and that given by BPS. We note in particular 
that the BPS solution (2.11) is the sum of successively smaller terms that decay exponentially. 
A solution of this type only exists by virtue of the fact that the boundary-value problem is 

1 solved by BPS over a finite interval. In our solution we see from (3.9) that when k/> ~ the 

decay to a steady state is dominated by an exponentially small term whose coefficient also 
decays with increasing time, through algebraic terms. For k < ~ we see that the response time is 

1 
much greater than for k >I i ;  a similar feature is reflected in the BPS solution through the 
characteristic equation (2.12). The reason for this change in response time as k passes through 
the value i is not clear. However we note that for smaller values of k large quantities of solute 
are rejected at the interface. As a consequence large concentration gradients are formed with 
the result that the diffusive process is more active in opposing convection, leading, in turn, to a 
longer response time. For k = 0 no meaningful solution exists, because in this case no solute is 

incorporated into the solid phase at the interface. Hence the solute continually builds up at the 
interface as diffusion is unable to overcome convection. 

Comparing Figs. 2 and 5 we see that our results for the interface concentration for the 
rotational case and those of BPS correspond more closely, although for large time there is still 

a significant disparity. This can be appreciated in detail from the fact that the eigenvalues 
generated by (3.26) are smaller by a factor of about two compared with those calculated from 
(2.12) in the BPS model. See Table 1. 

We can identify three stages in time-dependent process. An initial stage where diffusion 

is the most important factor which acts due to the large concentration gradients imposed on the 
system. Then after a time convection will have brought the modified concentration jump up to 
the interface causing a rapid change in concentration there. Lastly when the concentration is 
near its final value diffusion exists in near equilibrium with convection transient effects now 
playing a small and diminishing role. 
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In this final stage the effect of  maintaining a fixed concentration at a finite distance z = 6 

will be significant as is reflected in the relative sizes of  the eigenvalues of  BPS when compared 

to those which we have calculated. 

For  the reasons outlined above the model adopted by BPS, in which rotational effects are 

not explicitly included, can only fortuitously give results which are in reasonable agreement 

with those obtained from a model in which rotational effects are properly incorporated. How- 

ever it may be noted [6] that the effect of  applying the outer boundary condition at the finite 

distance z = 6 from the interface introduces an artificial solute sink into the system. This sink, 

which leads to a value o f k e f  f > k, may be thought of  as a crude model of  the sink effect in the 

rotation case where solute not absorbed by the solid phase is centrifuged radially away. Of 

course the strength of  the artificial sink cannot be accurately determined in a rational manner 

and depends on the value of  6. It happens that the value of  6 given by (3.16) is close to that 

required to model rotational effects in a reasonable way, although this point  was not made by 

BPS. As a model of  the normal freeze technique the work of  BPS is not  appropriate.  This is due 

in part to the fact that in the absence of  a viscous boundary layer there is no way in which 

may be estimated but largely due to the fact that the introduction of  any artificial sink is 

undesirable as it is known that no solute depletion occurs in this case so that k e f  f = k. 
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